\(\int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx\) [590]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 163 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=-\frac {a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b \left (a^2-b^2\right ) d}+\frac {\left (a^2-2 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^2 \left (a^2-b^2\right ) d}-\frac {a \left (a^2-3 b^2\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{(a-b) b^2 (a+b)^2 d}+\frac {a \sqrt {\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))} \]

[Out]

-a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b/(a^2-b^2)/d+(a^2-2*
b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/b^2/(a^2-b^2)/d-a*(
a^2-3*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/(a
-b)/b^2/(a+b)^2/d+a*sin(d*x+c)*cos(d*x+c)^(1/2)/(a^2-b^2)/d/(a+b*cos(d*x+c))

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2878, 3138, 2719, 3081, 2720, 2884} \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {\left (a^2-2 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^2 d \left (a^2-b^2\right )}-\frac {a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \left (a^2-b^2\right )}-\frac {a \left (a^2-3 b^2\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b^2 d (a-b) (a+b)^2}+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \left (a^2-b^2\right ) (a+b \cos (c+d x))} \]

[In]

Int[Cos[c + d*x]^(3/2)/(a + b*Cos[c + d*x])^2,x]

[Out]

-((a*EllipticE[(c + d*x)/2, 2])/(b*(a^2 - b^2)*d)) + ((a^2 - 2*b^2)*EllipticF[(c + d*x)/2, 2])/(b^2*(a^2 - b^2
)*d) - (a*(a^2 - 3*b^2)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/((a - b)*b^2*(a + b)^2*d) + (a*Sqrt[Cos[c +
 d*x]]*Sin[c + d*x])/((a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2878

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-(b*c - a*d))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 - b^
2))), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[c*
(a*c - b*d)*(m + 1) + d*(b*c - a*d)*(n - 1) + (d*(a*c - b*d)*(m + 1) - c*(b*c - a*d)*(m + 2))*Sin[e + f*x] - d
*(b*c - a*d)*(m + n + 1)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && Ne
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegersQ[2*m, 2*n]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {a \sqrt {\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {\int \frac {-\frac {a}{2}+b \cos (c+d x)+\frac {1}{2} a \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{-a^2+b^2} \\ & = \frac {a \sqrt {\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {\int \frac {\frac {a b}{2}+\frac {1}{2} \left (a^2-2 b^2\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b \left (a^2-b^2\right )}-\frac {a \int \sqrt {\cos (c+d x)} \, dx}{2 b \left (a^2-b^2\right )} \\ & = -\frac {a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b \left (a^2-b^2\right ) d}+\frac {a \sqrt {\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac {\left (a \left (a^2-3 b^2\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 b^2 \left (a^2-b^2\right )}+\frac {\left (a^2-2 b^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 b^2 \left (a^2-b^2\right )} \\ & = -\frac {a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b \left (a^2-b^2\right ) d}+\frac {\left (a^2-2 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^2 \left (a^2-b^2\right ) d}-\frac {a \left (a^2-3 b^2\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{(a-b) b^2 (a+b)^2 d}+\frac {a \sqrt {\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \cos (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.21 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.19 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {\frac {4 a \sqrt {\cos (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {8 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {10 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+\frac {2 \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{b^2 \sqrt {\sin ^2(c+d x)}}}{(a-b) (a+b)}}{4 d} \]

[In]

Integrate[Cos[c + d*x]^(3/2)/(a + b*Cos[c + d*x])^2,x]

[Out]

((4*a*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*(a + b*Cos[c + d*x])) - (8*EllipticF[(c + d*x)/2, 2] - (10
*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + (2*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] +
 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[c +
 d*x]]], -1])*Sin[c + d*x])/(b^2*Sqrt[Sin[c + d*x]^2]))/((a - b)*(a + b)))/(4*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(793\) vs. \(2(239)=478\).

Time = 5.82 (sec) , antiderivative size = 794, normalized size of antiderivative = 4.87

method result size
default \(\text {Expression too large to display}\) \(794\)

[In]

int(cos(d*x+c)^(3/2)/(a+cos(d*x+c)*b)^2,x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+
2*a^2/b^2*(-1/a*b^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos
(1/2*d*x+1/2*c)^2+a-b)-1/2/a/(a+b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2/(a^2-b^2)*b/a*(sin(1/2*d*x+
1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipti
cF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2/(a^2-b^2)*b/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2
)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2
*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*
d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*E
llipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))+8*a/b/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/
2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*
b/(a-b),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(3/2)/(a+b*cos(d*x+c))**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a)^2, x)

Giac [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{3/2}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int(cos(c + d*x)^(3/2)/(a + b*cos(c + d*x))^2,x)

[Out]

int(cos(c + d*x)^(3/2)/(a + b*cos(c + d*x))^2, x)